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A STUDY OF WAVENUMBER INTEGRATION TECHIQUES

ABSTRACT

A detailed study is made of the Bouchon (1981) trapezoidal integration rule for
evaluation of Sommerfeld integrals. A problem with non-propagating arrivals is
found with integrands involving the zero order Bessel function. A mid-point rec-
tangular integration rule is offered as a imperfect way to reduce this error. To
test numerical evaluation of Hankel transforms, the Haskell (1963) wholespace
solution is reformulated, and examples are given of the analytic, Bouchon numeri-
cal integration and mid-point numerical integration of the eight dislocation and
two explosion Green's functions.

Bouchon (1981) discussed the application of a trapezoidal numerical integration rule to the
evaluation of the Sommerfeld integral. The discussion followed previous work (Bouchon, 1979) on
obtaining the solution for wave propagation due to a point source by evaluation of a two dimen-
sional Fourier transform over the two spatial wave numbers. Because the behavior of numerical
evaluation of Fourier transforms by the discrete Fourier transform technique is well known,
Bouchon (1979) was able to show that a discrete two-dimensional trapezoidal rule yields a wave n7

field corresponding to a distribution of point sources on a rectangular grid. Knowing this, it is
easy to establish the wave number sampling interval required to yield seismograms uncontam-
inated by spatial aliasing.

Bouchon (1981) had the objective of specifying the wave number sampling criteria to avoid
spurious arrivals due to spatial and temporal aliasing when a trapezoidal integration rule is
applied to the Sommerfeld integral. Bouchon found that

fF(k)Jo(kr)dk = EEF(k)Jo(kar)Ak , (1)
0 n=0

Iwhere o - , ei l, otherwise, Ak=z2r/L, ko=nAk, and F(k) is the Sommerfeld kernel. The

equality in equation (1) holds as long as the following two conditions hold:

L '> 2r

[(L-r)'+z 2  > vt r
where z is the vertical distance between the source and the receiver, r is the radial distance
between the source and receiver, t is the maximum time for which a trace is to be generated, and
v is the velocity of the wave, of the fastest wave if the problem has many arrivals. Outside this
(rt) window spurious arrivals are seen. In addition, since a discrete Fourier transform is used to
invert (1) from the space-frequency to the space-time domain, Bouchon used a complex angular 5

frequency given by w-ica to control the inherent periodicity in the time series.

Figures 1 - 3 illustrate the sensitivity of the resultant seismograms to the parameters L and
a. The time history generated is that of the RDS Green's function (APPENDIX), for a point
source at a depth of 10 km beneath the receiver. The medium parameters are given in the appen-
dix. Figure 1 has a=0.0039 and L=100 km, Figure 2 has a=0.03125 and L=100 km, and Figure
3 has a=0.03125 and L-:200 km. A total of 64 seconds of time history are presented. The effect ,
of the different values of a is not very apparent in these figures, since the later arrivals are of low
amplitude to begin with. The difference is seen in the quietness of the traces prior to the first
arrival, at 30 and 70 km for example, and in the occurrence of less ripple in Figure 2 than in Fig-
ure 1. A comparison of Figures 2 and 3 shows the effect of increasing L. The number of noise
arrivals decreases.

Figure 4 uses the -im' parameters as Figure 3, except that a reduction velocity of 6.15
kminsec is used. All traces start at a time t r 6 1) - 0 50 secondn. At large distances, a
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significant noise arrival overwhelms the expected solution. This noise arrival appears to be the
integral of the expected waveshape in the far-field. It is present in Figures 1 - 3, and appears at a
time corresponding to a non-causal arrival traveling the vertical distance between the source and
the receiver. This noise is seen only in the integrals involving the JO(kr) Bessel function and
corresponds to a k=O contribution. The reason it appears worse in Figure 4 than in Figure 3, is
that it wraps around to a later time, when reduced travel times are used, and is excessively
exponentially increased when the time series is undamped. This points out the double edged effect
of using complex frequency, in that the noise due to later arrivals can always be reduced, but an
arrival earlier than the desired time window will be severely enhanced.

To understand the problem and also to appreciate the propagating noise terms, we return to
the Bouchon (1981) development. Bouchon really showed that

( ,F(k,)J,(k~r)Ak = fF(k)Jm(kr)dkAk 6 6(k-k,) (2a)
0-O 0

oof F(k)Jm(kr)dk21r E e(kL-2n~r) (2b)

0

00

f F(k)Jm(kr)dk E e' L  (2c) ,
0 =-,M'

= fF(k)Jm(kr)dk (2d)
0

f- fF(k)Jm(kr)dk r, 2cos(nkL) !

0 l

These are essentially equations (15-18) in Bouchon (1981), working backwards. We used the
property of the Dirac distribution that 6(ax)=(x)/I a . Bouchon further expanded (2d) to show
its equivalence to contributions of concentric rings of sources with radii L, 2L, 3L, ..., etc, about
the point source. We note here that for large kr, we can use the asymptotic expansion of the
Bessel function and a stationary phase approximation to show that the left hand side of (4)
corresponds to an infinite set of arrivals in the (r,t) domain which are

1/2 )1/2""

g(r,,z,t)-- ( I~ ) (Lzt) (i (+rzt4..

where the function g is the hilbert transform of g. The validity of this is seen by examining the
noise arrivals in the Figures 1 - 4.

The functional form of (2d) is such that the equation is easily described in words! The tra-
pezoidal integration rule is an approximation of the true integral, with the second term in (2d)
being the error term. As seen the error term contributes propagating numerical noise. It is also
apparent that the error term is indeterminate when k=O because of the infinite summation. We
have numerically evaluated the ten basic Green's functions for dislocation sources and explosive
sources (Haskell, 1963; Haskell, 1964; Appendix of this paper) and found that the k=O noise
appeared only with the integrals containing the JO(kr) term. The kernel of the Sommerfeld
integral, which is

O-p

(R)e/ _
f

_
(- )c J°(kr)dk, (3a)

0 V

where

R 2 -- r. z"-

2"[:

VV2 k2-

.'#. .., .#. .' '. ' . . . ' " ." ." ." . . ." " ." -" -" , . . , - - . # . " " " " " " " -" ." -" , . € . . " " "2'
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is zero at k=O, but evidently this is not enough to overcome the indeterminacy of the error term.
On the other hand, the negative radial derivative of (3a),

do s(ot ha e"uc" 2 - -. v j ( )e ) J 1(k r)d k (3 b )

does not have such a noise arrival. The noise arrival is worst with the negative vertical derivative
of (3a)

-2-+ -V)e f ke -"v1  Jo(kr)dk (3c)

at large distances, since the expected arrival decreases rapidly due to the radiation pattern term %
(-z-) while the kO noise arrival does not.,%

Rx
A comparison of figures 2 and 3 shows that the k=O noise term is reduced in amplitude by

a factor of 4, with the same polarity, when Ak is decreased b) a factor of 2, which is expectedbehavior for a trapezoidal integration rule (Abramowitz and Stegun, 1964). Consider for a :

moment the trapezoidal integration rule, first with sampling interval Ak and then with an inter- .
val Ak/2. The corresponding rules are

f(k)dk = Ak(-Lfi+f2 + ' + )±O(Ak (4a)
2

and
0C

f f(k)dk = Ak(-Lf+fI +f+f_3 +f 2 +...+ - )+O(Ak 2 ,'4) (4b)
0 2 T

where f, , f(nAk). We note that (4b) is just the sum of (4a) and the mid-point rectangular
integration rule

ff(k)dk = Ak(f, 'f 3 +... )+O(Ak 2 ) (4c)
0 -'

Since the numerical experiment of Figures 2 and 3 showed that the k=O noise was reduced by a %

factor of 4 when Ak is reduced by a factor of 2, this suggests that the synthetic generated using

(4c) must have a k=O noise arrival that is - 3 the size of that in (4a) so that (4b) yields a k= 0
4

noise arrival that is - that of (ia)!
4

The implication of this is that a shifted rectangular midpoint rule can be used to substan-
tially reduce the k=O noise arrival in fact, we have found through numerical experiments that a L

numerical integration rule

F(k.)J .(k.r)Ak (5)

with

k. =- nAk - 0 218Ak

works best with Ak=2rr, l.

Figure 5 consists of the same parametvr- as used to generate Figure 4, except that the
shifted rectangular rule of (5) is used rather th:an the trapezoidal rule of (1). Numerical noise is
still present a low frequencis, but a least the k 0 noise no longer overwhelms the cxpected sig-
na l at large distance. The remaining propagating noise can be reduced by using a larger value for
L. As indicated above, a phase change in noted in the waveforms of the propagating noie
arrivals, when they are compared to the correpi riding arrivals in Figure I
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For completeness, it is necessary to show that (5) is equivalent to the analytical integral
within the Bouchon specified (r,t) window. Following (2) we obtain

00 00 00

EF(k.)Jm(k.r)Ak = fF(k)Jm(kr)dkAk E 6(k-k.) (6a)
li0 0 0=--W

00

fF(k)Jm(kr)dk (6b)
o

00 0

+ fF(k)Jm(kr)dk E 2cos(n(k-ko)L)
0 0-I

where we define k.=nlk+k0 . The only difference between (6b) and (2d) is the error term, which
is no longer indeterminate when k=O. For large kr, the error term still represents propagating

arrivals, with the inwardly and outwardly propagating arrivals differing by *- in phase, but now
2

the outwardly propagating waves are also phase shifted with respect to the direct arrivals from
the source.

The numerical integration rules used in (2) and (6) are simple cases of general Newton-Cotes
integration rules. In numerical analysis, one typically is taught that a higher order Newton-Cotes
formula, such as the Simpson rule, yields better estimates of the integral. This generalization is
invalid when a wave propagation problem is being solved, as is done here. Using the same nota-
tion as used in (4), the Simpson rule would be

00

ff(k)dk = (fo+4f,+-%+4f+...-)+O(Ak)
0 "

(-)..k( fo+f)+f2--...+ (7)

2
+ (2-)Ak(f1 +f 3+f 6++ )e

3
which is recognized as a combination of a trapezoidal rule with sampling Ak with a midpoint rec-
tangular rule with sampling 2Ak. In evaluating wave propagation integrals of the Sommerfeld

* type, we would see more noise arrivals that in applying just the trapezoidal rule. In this case, an
attempt at additional numerical accuracy backfired. A similar observation was made by Bakun
and Eisenberg (1970) in a discussion of the numerical evaluation of the Fourier transform.
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APPENDIX: WHOLESPACE SOLUTION

Haskell (1963) built the solution for the displacement field due to point couples in a
wholespace by starting with the analytic solution for the displacement field due to a point force
given in a cartesian coordinate system. Solutions for point single couples were obtained, and the
solution was cast into a cylindrical coordinate system, through the use of partial derivatives of the
Sommerfeld integral. Ha~kell (1964) extended the Haskell (1963) work to a layered halfspace, to

include double-couple and dipole point forces. Because the Haskell (1963) work gives both the
integrands of the Hankel transform as well as the analytical answer, the wholespace problem is
the appropriate one to use for testing a numerical Hankel transform scheme. The equations below
cast the Haskell (1963) derivations into the Green's functions for dislocation and explosive
ources, given by Herrmann and Wang (1985). The Green's functions are defined as follow:

00

ZDD = fFI(k,w)Jo(kr)dk (la)
0

RDD =-- -fF.(k,w)Jj(kr)kdk (Ib)
0

ZDS = fF 3 (k,w)J ,(kr)dk (ic)
0

RDS = fF,(k,w)JO(kr)kdk (Id)
0
00

-F,(kw) + F9(k,w)]J 1(kr)dk
r 0

TDS fF,(k,wjJD(krjkdk le)
o
00

_If [F,(k,w) + Fo(k,w)jJJ(kr)dk

r0

ZSS fFb(kw)J.,(kr)dk (1f)
o
00

RSS-- fFO(k..o)JI(kr)kdk (lg)o '
00

r[Fdk'w) - F1o(k,w) J,(kr)dk

00

TSS = fFlo(k,.o)JI(kr)kdk (lh)
0

00

-2 f [Fa(k,w) + Fjo(k,W)]J 2(kr)dk

00

ZEP fF7(kW)Jo(kr)dk (ii)
0

REP =-fFs(k,..,)J,(kr)kdk (Ij)
0

For an arbitrarily oriented double couple %ithout moment source model with vector n .
--- (n1 ,n0 ,n3) normal to the fault and f = (ff 2 ,fG) In the direction of the dislocation ( Haskell,

1963; Haskell, 1964), equation (11) of Wang and lrrmann (1980) for the Fourier transformed

'.. ... , -.. ". ."% .-% ... -".. . . ".".,%, . . .'. . . .., .'., . • .., .-... "-'-. ..% -".-. .,. .- . .-.-U
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displacements at the free? surface at a distance r from the origin becomes

U,(r.O,:,.) = ZSS[(fjnl-f 2 n2 )cos2io+(fln 2 +f2 ni)Siri2pI (2a)

+ ZDsr,(tlrl 3+ fanl)cosp+( 2n3+f~n2)sinpjO

+ ZDD~fan,3]

Ur(r,O.,-) = RSS[(fln 1- f2 n2 )Cos2;P+(fjn 2 +f 2 nj)sin2;P] (2b)

+ RDS[(fln3+f 3 nj)cosro+(fan 3 + f-n 2)sinoI

+ RDD~fan 3]

LOr, )= TS [(flnj-f2 n2)sin2;p-(fjn2+f 2 r 1 )cos2oI (2c)

+ TDS[(Fl n+ f3n1 )sin - (f 2 n3 + f3 n2 )COS 9]

Explicit expreosions for the Fj(k,...) functions for a point source buried at a depth h beneath
the : -urce in a wliolt.: pace %%ith conipresziorial velocity, af, Thear velocity, 13, and density. p. are
&erived from Haskell (1963, 196-1) as follow:

Vk2- k2 k> k,,
VCk 2 k<k0

ti vk

and

JVVk-k k~kq

=lvk,2 k2 k<kj

* we have
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Fj(k,w) = k [(2ko-3k )e-'+3k e-  (3a)

-__k (2 _ 2) e (3b)
-. ~4irpo. r

F4(kw) = - (3b)
7r w7x [(2ko- (k-k)_](

SF(k,)3c)

F(k,w) -1 22ke-v#-(2k2-k2)e- "  (3d)
4irpw 

(

FS(k,) (3e)
47rp.A 

3e

Fe(k,w) k [k e- - # ]  (3f)
47rp2 V.

k o (kg)

.. F7(k,w) -k e-"h"" 4 4rpa
2  (3g)

Fi(k,,) - , (3)
4 rpar V

F 0( k ,w ) - k 
( 3 i)

- e (3j)
4, pf02V

The vertical displacement u, is positive upward, the radial displacement is positive away
from the source, and the tangential displacement uo is positive in a direction clockwise from
north. The vectors n and f are still defined in a local coordinate system at the source in which
the cartesian axes are in the north, east and downward directions. Following Herrmann (1975)
the components of these vectors can be expressed in terms of the fault plane parameters of strike,
dip and slip. The strike, of, is measured clockwise from north, the dip, dr, is measured in a posi-
tive sense from the horizontal direction perpendicular to strike, and the slip, Xr, is measured on
the fault plane in a counterclockwise sense from the horizontal direction of strike. With these
conventions, all possible fault planes are encompassed by the ranges in the angles of

_00< Or < 3600, 0' < dr < 900, and -1800 < Xr < 1800. With this notation, the sense of P-wave
first motion at the center of the focal sphere is positive for positive values of XA and negative for
negative values. The components of the vectors are

fi = cosXf cosr - sinXr cosdf sin~r

f2 = cosXf sindt - sinXf cosdr cosof

f3 = -sinXr sindf

nj = -sin~r sindr

n, = cosof sindr

n 3 - -cosdf

Following Haskell (1963). the analytic closed form solutions corresponding to (la) to (1j) are

I

r.. .. . .. . . . .. . . . . . - , . ,. . . - . - . - .-- " .. . . . ,. -. - . . . . ' . . .. ..,

' ' . . , .. ., -,"" - -""" .' -""" " .""" -" " .""-,-.-"-. - - - - - - I * I . . . . . .. ," 
" ' ' ,. a.d .. d '| ,I 

-
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ZDD = 3 +k 2 OF-39 -3k_2 a$(4a)
47rpwa2  aZ3  OZ z3- $ az

I 1 3lFc, a F, OF
RDD =4 13- 2 3r'z- 2 I(b

ZDS = ! aI2F. 8k,2I WOc)
4irpw2O Or Oz ar Ora

-1 a
3 F, 8 3 FO F

RDS = 2- a 9z F, (4d)

rrS = '!aF-aF -A 2 aO (4e)
4 7rpw

2 r araz arOz a z
I a__ 3F0  

3 F 2 8O 3F, 8
3 F# O

ZSS 12 +-*+k 20 5- 5Z_(f
irpw2 r~aZ 09z 3  

0 z Oaz --~ -- (4

RSS = 12 ± 3F-- ' 3F- OF k 3 F 0 2ks 26r- OFg)
4 7rpw . r O 3  Oz2Or 5r -r O 3 

-92 Oz2 r- Or(

= eF 0, &3F. OF,, O3Fp 03 F,
TSS =ipw [2+---±k 2 2 -23 -k F,,)

Or z2  
- Or Or3 *aZV ar4h

ZEP I4i

REP =-1 O F, 4j
4 irpa2 Or (

The function F, is the Sommerfeld integral,
-iWR 00

R - - J0(kr)dk

where

R 2 = r2 + h 2

and

2 k 2

V

The specific expressions for the partial derivatives of the Sommerfeld integral are

r h iw h

1 v R

-i r i
Ori

O2 F -rz )+(iw(-rziW 2 -rz~
e V (-)9raz =i - R [1 RJl)~~~I~

o'3F. -OjR r 15r 3 'i i -r 15r 3 w 2 -3r 6r' +i 3 r' 1
Or 3  R' 7  vLR4  RJ R RJvRJJ

a3 F, -wR(h 15h3  iw j O h 15h 3  iW (-h + h'IiW 3 h

RZ R7 T'' 4 R v R3 R5 Jv'RJJ
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TIME HISTORt7.S

Following Wang and Herrmann (1980), the follow:,ig convention i- usea to define the
Fourier transform H(f) of the time series h(t):

00

H(f) = f h(t)exp(ilri, .dt (5)

This integral is approximated by a Discrete Fourier Trai:"form in itu Fast Fourier T-ansfurm
implementation (Brigham, 1974).

To generate synthetic seismograms, the following source tini, fir-ction ib used:

0

1 tt<0
* -tr 2  0<t<-r

2 .s(t) = r<t<3 (6)
- (t/r)2+ 2 (t/r) 3r<t<4r

I t>4r

" This time function has a unit area. In addition, it has spectral zeros at certain frequencies. If
r = MAt, where 1 is some power of two, then spectral zeros are at frequencies fN, fN/ 2 ,

fN/ ., fN/(2M), where fN is the Nyquist frequency defined as fN= -, and N is also a
2At'

power of 2. By choosing r and At such that one of the spectral zeros occurs at the Nyquist fre-
quency, the pulses can be synthesized and propagated through the model without the rippling
introduced by an arbitrary, sharp high frequency spectral cutoff.

The synthetic seismograms are presented to show the effect of using the trapezoidal and
5.

mid-point rectangular numerical integration rules. The three sets of figures correspond to the
evaluation of (1) for a wholespace. To provide a uniform basis of comparison, the seismic
moment is fixed at a value of 1.OE+20 dyne-cm, the duration parameter r is set to 0.5 seconds,
and the depth is fixed at a constant value of 10 km. The velocities are &=6.15km/sec and
.3=3.55km/sec and the density is p=2.8gm/cm3 . A 256 point time series is synthesized using
At=0.25 sec. Velocity time histories with units of cm/sec are generated. A causal
Q, = Q3 = 10000 is used, but these are so large that they do not affect the results displayed. A
time domain damping factor is used to reduce the discrete Fourier transform periodicity, which

corresponds to replacing all occurrences of w in the frequency domain by w-iO.046875. All resul-
tant time series have been undamped.

.%n important aspect of the computations concerns the upper limit used in the Hankel
transform. Obviously, a KNILX = oo is out of the question. Fortunately the integrands become
small for large k due to the exponential decay terms, except, when the depth is zero. We take

KNAX = maxrFACksmt, , h
]h:MAh

where FAC is taken to be 3 in Figures 1-5 and 2 in the Figures in this appendix. The choice of
two values controls special computations to ensure the proper computations of the low frequency .

contributions to the time history. Basically, an asymptotic expansion is used in this case to deter-
mine the contribution from k=KNPLX to k-oo. Too large a value for FAC will require too
many computations without much discernible difference in the high frequency synthetics, while
too low a value will introduce significant low frequency errors in the time series.
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NUMERICAL EXAMPLES
The first set of figures, "whom" gives the analytic solution using equation (4). A reduced

travel time plot with initial time given by t = -1.01 + r/6.15 seconds, where r is the epicentral
distance. The correspondence between the identifier JSRC and the specific Green's function is as
follows:

JSRC Green's Function

I ZDD
2 RDD
3 ZDS
4 RDS
5 TDS
6 ZSS
7 RSS
8 TSS
9 ZEP

10 REP

The Green's functions show the P-wave and S-wave arrivals expected at large distances. The S-
wave arrival on the RDD and RSS components has a waveform that is an integral of the expected
far-field arrival, the corresponding shape of the P-wave.

The second set of figures, "WI000TO.00000", is the result of the numerical evaluation of the
Hankel transforms using the Bouchon trapezoidal rule. An L=1000 km was used. The k=0 noise
is very apparent on the ZDD, RDS, TDS and ZEP traces. This noise arrival also demonstrates the
periodicity of the discrete Fourier transform as well as the problems with using complex fre-
quency. Propagating noise arrivals are seen in the traces beyond 300 km, because the criteria
relating L, r, z, v and tmax in equation (1) are no longer satisfied. To eliminate these, we need only
make L somewhat larger. Nothing of value should be expected of the trace at 500 km because
the direct and first inwardly propagating noise arrival superimpose. At this distance, the inequali-
ties of the Bouchon analysis, equation (1), are violated.

the last set of figures, "WIOOOTO.21739" , corresponds to the use of the mid-point rule (5)
with k0 = 0.21739Ak. As designed, the k=0 noise arrival is significantly reduced, although some
low frequency numerical noise is introduced at large distance. The difference in the integration
rules is most readily apparent in the TDS and ZEP time histories.

.. . . .. .. . .
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* FIGURE CAPTIONS
* Fig. 1. Synthetic seismograms for the RDS component, using 0--O.0039 and L=O0km.

Fig. 2. Synthetic seismograms for the RDS component, using at=O.03125 and L=1O0km.

Fig. 3. Synthetic seismograms for the RDS component, using a=O.03125 and L=200km.

Fig. 4. Synthetic seismograms for the M).S component, using av=O.03125 and L=2O0kri, but
using a redJuced travel ti~.ae display.

Fig. 5. Synthetic seism.ograms for the RDS component, using a=0.03125 and L=20km, a
reuced travel time display, but using the shifted rectangular integration rule rather
than the Bouchon trapezoidal integration rule.
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reduced travel time display, but using the shifted rectangular integration rule rather
than the Bouchon trapezoidal integration rule.
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The following figures provide the ten Green's functions for
the analytic solution, "whom," listed at the bottom of the model
page, for the Bouchon integration scheme 'lOOOTO.00000,"
and for the modified rectangular rule, "WOOOTO.21739."

Note that the modified rectangular rule does reduce the false
k = 0 arrival. However, the synthetics obtained using the numerical
integration techniques still have noise arrivals at large distances
due to too small a choice for L. This noise is seen at distances
larger than 300 km and corresponds to a P-wave arrival at a time
of (1000 - r)/6.15 seconds. This is readily seen in the JSRC = 2, 9
or 10 Green's functions. There is no such problem with S arrivals,
as seen in the predominantly SH Green's functions JSRC 5 and 8.
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